Mechanics 3

Revision Notes

June 2016
1 Further kinematics 3

Velocity, v, and displacement, x. ... 3

Forces which vary with speed... 4

Reminder $a = \frac{dv}{dx}$.. 4

2 Elastic strings and springs 5

Hooke’s Law... 5

Elastic strings ... 5

Elastic springs ... 5

Energy stored in an elastic string or spring ... 7

3 Impulse and work done by variable forces 9

Impulse of a variable force .. 9

Work done by a variable force .. 10

4 Newton’s Law of Gravitation 11

Newton’s law of gravitation .. 11

Finding k in $F = kx^2$... 11

5 Simple harmonic motion, S.H.M. 13

The basic S.H.M. equation $\ddot{x} = -\omega^2 x$.. 13

$x = a \sin \omega t$ and $x = a \cos \omega t$... 13

Period and amplitude .. 13

$v^2 = \omega^2 (a^2 - x^2)$.. 13

Horizontal springs or strings .. 15

Vertical strings or springs .. 16

6 Motion in a circle 17

Angular velocity ... 17

Acceleration .. 17

Alternative proof .. 18

Motion in a horizontal circle .. 18

Conical pendulum ... 18

Banking .. 19

Inside an inverted vertical cone .. 20
7 Motion in a circle 2

Motion in a vertical circle

Proof that \(a = \frac{v^2}{r} \) for variable speed

Four types of problem

i Vertical motion of a particle attached to a string

ii Vertical motion of a particle inside a smooth sphere

iii Vertical motion of a particle attached to a rigid rod

iv Vertical motion of a particle on the outside of a smooth sphere

8 Centres of mass

Centre of mass of a lamina

Centre of mass of a sector

Centre of mass of a circular arc

Centre of mass of a solid of revolution

Centre of mass of a hemispherical shell – method 1a

Centre of mass of a hemispherical shell – method 1b

Centre of mass of a conical shell

Centre of mass of a square based pyramid

Centre of mass of a hemispherical shell – method 2

Tilting and hanging freely

Tilting

Hanging freely under gravity

Body with point mass attached hanging freely

Hemisphere in equilibrium on a slope
1 Further kinematics

Velocity, \(v \), and displacement, \(x \).

We know that \(v = \frac{dx}{dt} = \dot{x} \), and \(a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = \ddot{x} \)
\[\Rightarrow v = \int a \, dt \quad \text{and} \quad x = \int v \, dt \]

Note: \(\frac{dx}{dt} = \dot{x} \) is the rate of increase of \(x \), therefore it must always be measured in the direction of \(x \) increasing. For the same reason \(\frac{d^2x}{dt^2} = \ddot{x} \) must also be measured in the direction of \(x \) increasing.

\(x \) is the displacement from \(O \) in the positive \(x \)-axis direction,

![Diagram of O and P with x, ẋ, and ẍ labels](image)

You **must** mark \(\dot{x} \) and \(\ddot{x} \) in the directions shown.

Example: A particle moves in a straight line and passes a point, \(O \), with speed 5 m s\(^{-1} \) at time \(t = 0 \). The acceleration of the particle is given by \(a = 2t - 6 \) m s\(^{-2} \).

Find the distance moved in the first 6 seconds after passing \(O \).

Solution:

\[\dot{x} = v = \int \ddot{x} \, dt = \int 2t - 6 \, dt = t^2 - 6t + c \; ; \quad v = 5 \text{ when } t = 0 \Rightarrow c = 5 \]
\[\Rightarrow v = \ddot{x} = t^2 - 6t + 5 \]
\[\Rightarrow x = \int \dot{x} \, dt = \int t^2 - 6t + 5 \, dt = \frac{1}{3}t^3 - 3t^2 + 5t + c' \quad x = 0 \text{ when } t = 0 \Rightarrow c' = 0 \]
\[\Rightarrow x = \frac{1}{3}t^3 - 3t^2 + 5t \; . \]

First find when \(v = 0 \), \(\Rightarrow t = 1 \) or 5. The particle will change direction at each of these times.

\[t = 0 \Rightarrow x = 0 \Rightarrow \text{ particle moves forwards } 2\frac{1}{3} \text{ from } t = 0 \text{ to } 1 \]
\[t = 1 \Rightarrow x = 2\frac{1}{3} \Rightarrow \text{ particle moves backwards } 10\frac{2}{3} \text{ from } t = 1 \text{ to } 5 \]
\[t = 5 \Rightarrow x = -8\frac{1}{3} \Rightarrow \text{ particle moves forwards } 2\frac{1}{3} \text{ from } t = 5 \text{ to } 6 \]
\[t = 6 \Rightarrow x = -6 \Rightarrow \textbf{total} \text{ distance moved is } 15\frac{1}{3} \text{ m.} \]
Forces which vary with speed

Reminder \(a = \frac{dv}{dx} \)

\[
a = \frac{dv}{dt} = \frac{dx}{dt} \times \frac{dv}{dx} = \frac{dv}{dx}
\]

Example: On joining a motorway a car of mass 1800 kg accelerates from 10 \(m s^{-1} \) to 30 \(m s^{-1} \). The engine produces a constant driving force of 4000 newtons, and the resistance to motion at a speed of \(\nu \) \(m s^{-1} \) is \(0.9v^2 \) newtons. Find how far the car travels while accelerating.

Solution:

In this case the car is always travelling in the same direction.

\[\text{Res} \rightarrow F = ma \quad 4000 - 0.9v^2 = 1800 \frac{dv}{dx}\]

\[\Rightarrow \int_0^X dx = \int_{10}^{30} 1800 \times \frac{\nu}{4000 - 0.9v^2} \, dv\]

\[\Rightarrow X = -(1800 \div 1.8) \times \ln \left(\frac{4000 - 0 \cdot 9v^2}{10}\right)^{30} \]

\[\Rightarrow X = -1000 \times \ln \left(\frac{3190}{3910}\right) = 203.5164527\]

\[\Rightarrow \text{the car travels a distance of 204 m, to 3 S.F.}\]
2 Elastic strings and springs

Hooke’s Law

Elastic strings

The tension T in an elastic string is $T = \frac{\lambda x}{l}$, where l is the natural (unstretched) length of the string, x is the extension and λ is the modulus of elasticity.

When the string is slack there is no tension.

Elastic springs

The tension, or thrust, T in an elastic spring is $T = \frac{\lambda x}{l}$, where l is the natural length of the spring, x is the extension, or compression, and λ is the modulus of elasticity.

In a spring there is tension when stretched, and thrust when compressed.

Example: An elastic string of length 1.6 metres and modulus of elasticity 30 N is stretched between two horizontal points, P and Q, which are a distance 2.4 metres apart. A particle of mass m kg is then attached to the midpoint of the string, and rests in equilibrium, 0.5 metres below the line PQ. Find the value of m.

Solution:

By symmetry, the tensions in each half of the string will be equal.

Each half has natural length $l = 0.8$ m, and modulus of elasticity $\lambda = 30$ N.

Pythagoras $\Rightarrow PL = 1.3$

\Rightarrow extension in each half, $x, = 0.5$ m

$\Rightarrow T = \frac{\lambda x}{l} = \frac{30 \times 0.5}{0.8} = 18.75$

Res \uparrow $2T \sin \theta = mg \quad \Rightarrow \quad 2 \times 18.75 \times \frac{5}{13} = mg$

$\Rightarrow m = \frac{187.5}{13g} = 1.4717425\ldots = 1.5$ to 2 S.F.
Example: Two light strings, S_1 and S_2, are joined together at one end only. One end of the combined string is attached to the ceiling at O, and a mass of 3 kg is attached to the other, and allowed to hang freely in equilibrium. The moduli of S_1 and S_2 are 75 N and 120 N, and their natural lengths are 50 cm and 40 cm. Find the distance of the 3 kg mass below O.

Solution:

As the strings are light, we can ignore their masses and assume that the tensions in the two strings are equal.

(The tension is assumed to be constant throughout the length of the combined string.)

$$\text{Res } \uparrow \quad T = 3g$$

For S_1,

$$T = 3g = \frac{\lambda x}{l} = \frac{75x_1}{0.5} \quad \Rightarrow \quad x_1 = \frac{g}{50}$$

For S_2,

$$T = 3g = \frac{\lambda x}{l} = \frac{120x_2}{0.4} \quad \Rightarrow \quad x_2 = \frac{g}{100}$$

$$\Rightarrow \quad x_1 + x_2 = \frac{3g}{100} = 0.294$$

$$\Rightarrow \quad \text{Distance of 3 kg mass below } O, \text{ is } 0.5 + 0.4 + 0.294 = 1.194 \text{ to 2 S.F.}$$

Example: A box of weight 49 N is placed on a horizontal table. It is to be pulled along by a light elastic string with natural length 15 cm and modulus of elasticity 50 N. The coefficient of friction between the box and the table is 0.4. If the acceleration of the box is 20 cm s$^{-2}$ and the string is pulled horizontally, what is the length of the string?

Solution:

$$\text{Res } \uparrow \quad R = 49$$

Box moving $\Rightarrow \quad F = F_{\text{max}} = \mu R = 0.4 \times 49 = 19.6$

Res \rightarrow N2L, $T - F = 5 \times 0.2 \quad \Rightarrow \quad T = 20.6$

Hooke’s Law $\Rightarrow \quad T = \frac{50x}{0.15} = 20.6 \quad \Rightarrow \quad x = 0.0618$

$\Rightarrow \quad \text{the length of the string is } 0.15 + 0.0618 = 0.2118 = 0.212 \text{ m to 3 S.F.}$
Example: Two elastic springs, S_1 and S_2, are joined at each end, so that they are side by side. The bottom end of the combined spring is placed on a table, and a weight of 60 N is placed on the top. The moduli of S_1 and S_2 are 80 N and 100 N, and their natural lengths are 50 cm and 60 cm. Find the distance of the 60 N weight above the table.

Solution: $\lambda_1 = 80$, $l_1 = 0.5$, and $\lambda_2 = 100$, $l_2 = 0.6$.

The springs will have the same compressed length, but their compressions, x_1 and x_2, will differ.

Res \uparrow $T_1 + T_2 = 60$ \hspace{1cm} I

Hooke’s Law \Rightarrow $T_1 = \frac{80x_1}{0.5}$, $T_2 = \frac{100x_2}{0.6}$ \hspace{1cm} II

I and II \Rightarrow $160x_1 + \frac{500}{3}x_2 = 60$

and compressed lengths equal \Rightarrow $0.5 - x_1 = 0.6 - x_2$

\Rightarrow $x_1 = x_2 - 0.1$

\Rightarrow $160(x_2 - 0.1) + \frac{500}{3}x_2 = 60$

\Rightarrow $\frac{980}{3}x_2 = 76 \Rightarrow x_2 = 0.2326530612$

\Rightarrow weight is $0.6 - x_2 = 0.3673\ldots m = 37\text{ cm}$ above the table, to 2 s.f.

Energy stored in an elastic string or spring

For an elastic string the tension is given by $T = \frac{\lambda x}{l}$, when the extension is x. If the string is extended by a further small amount, δx, then the work done $\delta W \approx T \delta x$

\Rightarrow Total work done in extending from $x = 0$ to $x = X$ is approximately $\sum_{0}^{X} T \delta x$

and, as $\delta x \to 0$, the total work done, $W = \int_{0}^{X} T \, dx = \int_{0}^{X} \frac{\lambda x}{l} \, dx$

\Rightarrow $W = \frac{\lambda X^2}{2l}$ is the work done in stretching an elastic string from its natural length to an extension of X.

Similarly $W = \frac{\lambda x^2}{2l}$ is the work done in stretching (or compressing) an elastic spring from its natural length to an extension (or compression) of x.

This expression, $\frac{\lambda x^2}{2l}$, is also called the Elastic Potential Energy, or E.P.E., of an elastic spring or string.
Example: An elastic spring, with natural length 30 cm and modulus of elasticity 42 N, is lying on a rough horizontal table, with one end fixed to the table at A. The spring is held compressed so that the length of the spring is 24 cm. A teddy bear of mass 2 kg is placed on the table at the other end of the spring, and the spring is released. If the friction force is 5 N, find the speed of the teddy bear when the length of the spring is 29 cm.

Solution: At a length of 0.24 m the compression \(x = 0.3 - 0.24 = 0.06 \) and

the energy stored, E.P.E., is \(\frac{42 \times 0.06^2}{2 \times 0.3} = 0.252 \) J.

At a length of 0.28 m the compression \(x = 0.3 - 0.29 = 0.01 \) and

the energy stored, E.P.E., is \(\frac{42 \times 0.01^2}{2 \times 0.3} = 0.007 \) J,

\(\Rightarrow \) energy released by the spring is \(0.252 - 0.007 = 0.245 \) J.

The initial speed of the teddy bear is 0, and let its final speed be \(v \) m s\(^{-1}\).

Work done by the spring is 0.245 J, which increases the K.E.

Work done by friction is \(5 \times 0.04 = 0.2 \) J, which decreases the K.E.

Final K.E. = Initial K.E. + energy released by spring – work done by friction

\[\Rightarrow \frac{1}{2} \times 2v^2 = 0 + 0.245 - 0.2 = 0.045 \]

\[\Rightarrow v = \sqrt{0.045} = 0.2121320 \ldots \]

\[\Rightarrow \text{speed of the teddy bear is } 21 \text{ cm s}^{-1}, \text{ to 2 S.F.} \]

Example: A climber is attached to a rope of length 50 m, which is fixed to a cliff face at a point A, 40 metres below him. The modulus of elasticity of the rope is 9800 N, and the mass of the climber is 80 kg. The ground is 80 m below the point, A, to which the rope is fixed. The climber falls (oh dear!). Will he hit the ground?

Solution:

Only an idiot would consider what happens at the moment the rope becomes tight!

Assume the ground is not there – how far would he fall before being stopped by the rope. In this case both his initial and final velocities would be 0, and let the final extension of the rope be \(x \) m.

Loss in P.E. = \(mgh = 80 \times (40 + 50 + x) \)

= \(80g (90 + x), \) which increases K.E. and so is positive.

Work done in stretching rope, E.P.E., = \(\frac{9800x^2}{2 \times 50} = 98x^2 \)

Final K.E. = Initial K.E. + Loss in P.E. – E.P.E.

\[\Rightarrow 0 = 0 + 80g (90 + x) - 98x^2 \Rightarrow x^2 - 8x - 720 \]

\[\Rightarrow x = 31.12931993 \text{ (or negative)} \]

The climber would fall 121.1 m if there was no ground, so he would hit the ground 120 m below, but not going very fast.
3 Impulse and work done by variable forces

Impulse of a variable force

A particle of mass \(m \) moves in a straight line under the influence of a force \(F(t) \), which varies with time.

In a small time \(\delta t \) the impulse of the force \(\delta l \approx F(t) \delta t \)

and the total impulse from time \(t_1 \) to \(t_2 \) is \(I \approx \sum_{t_1}^{t_2} F(t) \delta t \)

and as \(\delta t \to 0 \), the total impulse is

\[
I = \int_{t_1}^{t_2} F(t) \, dt
\]

Also, \(F(t) = ma = m \frac{dv}{dt} \)

\[
\Rightarrow \int_{t_1}^{t_2} F(t) \, dt = \int_{V}^{U} m \, dv
\]

\[
\Rightarrow I = \int_{t_1}^{t_2} F(t) \, dt = mV - mU
\]

which is the familiar impulse = change in momentum equation.

Example: When a golf ball is hit, the ball is in contact with the club for 0.0008 seconds, and over that time the force is modelled by the equation \(F = kt(0.0008 - t) \) newtons, where \(k = 4.3 \times 10^{10} \). Taking the mass of the golf ball to be 45 grams, and modelling the ball as a particle, find the speed with which the ball leaves the club.

Solution: \(F(t) = kt(0.0008 - t), \ U = 0, \ V = ?, \ m = 0.045 \)

\[
I = \int_{0}^{0.0008} F(t) \, dt = mV - mU
\]

\[
\Rightarrow 0.045V - 0 = \int_{0}^{0.0008} k(0.0008 - t) \, dt
\]

\[
= k \left[0.0004t^2 - \frac{1}{3}t^3 \right]_{0}^{0.0008}
\]

\[
= 3.41333333\ldots
\]

\[
\Rightarrow V = 75.9 \, m \, s^{-1} \quad \text{(or} \quad 273 \, km \, h^{-1})
\]
Work done by a variable force.

A particle of mass m moves in a straight line under the influence of a force $G(x)$, which varies with time.

Over a small distance δx the work done by the force $\delta W \approx G(x)\delta x$

and the total work done in moving from a displacement x_1 to x_2 is $W \approx \sum_{x_1}^{x_2} G(x) \delta x$

and as $\delta x \to 0$, the total work done is

$$W = \int_{x_1}^{x_2} G(x) \, dx$$

Also, $G(x) = ma = m \frac{dv}{dt} = m \frac{dx}{dt} \times \frac{dv}{dx} = m v \frac{dv}{dx}$

$$\Rightarrow \int_{x_1}^{x_2} G(x) \, dx = \int_U^V mv \, dv$$

$$\Rightarrow W = \int_{x_1}^{x_2} G(x) \, dx = \frac{1}{2} mV^2 - \frac{1}{2} mU^2$$

which is the familiar work-energy equation.

Example: A particle of mass 0.5 kg moves on the positive x-axis under the action of a variable force $\frac{40}{x^2}$ newtons, directed away from O. The particle passes through a point 2 metres from O, with velocity $8 \, m \, s^{-1}$ in the positive x-direction. It experiences a constant resistance force of 6 newtons. Find the speed of the particle when it is 5 metres from O.

Solution:

The work done by the resistance is $6 \times 3 = 18$ J Decreases K.E. so negative

The work done by the force is $\int_2^5 \frac{40}{x^2} \, dx = \left[\frac{-40}{x}\right]_2^5 = 12$ J Increases K.E. so positive

Final K.E. = Initial K.E. – work done by resistance + work done by force

$$\Rightarrow \frac{1}{2} \times 0 \cdot 5V^2 = \frac{1}{2} \times 0 \cdot 5 \times 8^2 - 18 + 12 = 10$$

$$\Rightarrow V = \sqrt{40} \, m \, s^{-1}.$$
4 Newton’s Law of Gravitation

Tycho Brahe made many, many observations on the motion of planets. Then *Johannes Kepler*, using Brahe’s results, formulated Kepler’s laws of planetary motion. Finally Sir *Isaac Newton* produced his *Universal Law of Gravitation*, from which Kepler’s laws could be derived.

Newton’s law of gravitation

The force of attraction between two bodies of masses \(M_1 \) and \(M_2 \) is directly proportional to the product of their masses and inversely proportional to the square of the distance, \(d \), between them:

\[
F = \frac{GM_1 M_2}{d^2}
\]

where \(G \) is a constant known as the *constant of gravitation*.

However the *Edexcel A-level* course does not use the full version of this law, but states that the force on a body at a distance \(x \) m from the centre of the earth is inversely proportional to the distance of the body from the centre of the earth, \(F = \frac{k}{x^2} \).

Note that the body must lie on the surface of the earth or above.

Finding \(k \) in \(F = \frac{k}{x^2} \).

Model the earth as a sphere, radius \(R \) metres.

The force on a body \(x \) metres from the centre of the earth is \(F = \frac{k}{x^2} \).

\[
\Rightarrow \quad \text{The force on a particle of mass } m \text{ at the surface of the earth is } \quad F = \frac{k}{R^2}
\]

But we know that the force on \(m \) is \(mg \), towards the centre of the earth,

\[
\Rightarrow \quad \frac{k}{R^2} = mg \quad \Rightarrow \quad k = mgR^2 \quad \text{This is so easy that you should work it out every time}
\]

It can be shown that the force of gravitation of a sphere acting on a particle lying *outside* the sphere, acts as if the whole mass of the sphere was concentrated at its centre.
Example: A space rocket is launched with speed U from the surface of the earth whose radius is R. Find, in terms of U, g and R, the speed of the rocket when it has reached a height of $2R$. The force on a body x m from the centre of the earth is $F = \frac{k}{x^2}$.

Solution: Firstly, when the rocket is at a height of $2R$, it is $3R$ from the centre of the earth.

At the surface of the earth, taking the mass of the rocket as m,

$$\frac{k}{R^2} = mg \implies k = mgR^2$$

Gravitational force at a distance of x from the centre of the earth is $\frac{k}{x^2} = \frac{mg R^2}{x^2}$

Work done by gravity

$$= \int_{R}^{3R} \frac{mg R^2}{x^2} \, dx$$

$$= \left[-\frac{mg R^2}{x} \right]_{R}^{3R} = \frac{2}{3} mgR$$

Decreases K.E. so negative

Final K.E. = Initial K.E. – work done against gravity

$$\Rightarrow \frac{1}{2} m V^2 = \frac{1}{2} m U^2 - \frac{2}{3} mgR$$

$$\Rightarrow V = \sqrt{U^2 - \frac{4}{3} gR}$$
5 Simple harmonic motion, S.H.M.

The basic S.H.M. equation \(\ddot{x} = -\omega^2 x \)

If a particle, \(P \), moves in a straight line so that its acceleration is proportional to its distance from a fixed point \(O \), and directed towards \(O \), then

\[\ddot{x} = -\omega^2 x \]

and the particle will oscillate between two points, \(A \) and \(B \), with simple harmonic motion.

The amplitude of the oscillation is \(OA = OB = a \).

Notice that \(\ddot{x} \) is marked in the direction of \(x \) increasing in the diagram, and, since \(\omega^2 \) is positive, \(\ddot{x} \) is negative, so the acceleration acts towards \(O \).

\[x = a \sin \omega t \quad \text{and} \quad x = a \cos \omega t \]

Solving \(\ddot{x} = -\omega^2 x \), A.E. is \(m^2 = -\omega^2 \Rightarrow m = \pm i \omega \)

\(\Rightarrow \) G.S. is \(x = \lambda \sin \omega t + \mu \cos \omega t \)

If \(x \) starts from \(O, x = 0 \) when \(t = 0 \), then \(x = a \sin \omega t \)

and if \(x \) starts from \(B, x = a \) when \(t = 0 \), then \(x = a \cos \omega t \)

Period and amplitude

From the equations \(x = a \sin \omega t \) and \(x = a \cos \omega t \)

we can see that the period, the time for one complete oscillation, is \(T = \frac{2\pi}{\omega} \).

The period is the time taken to go from \(O \rightarrow B \rightarrow A \rightarrow O \), or from \(B \rightarrow A \rightarrow B \)

and that the amplitude, maximum distance from the central point, is \(a \).

\[v^2 = \omega^2(a^2 - x^2) \]

\[\ddot{x} = -\omega^2 x, \quad \text{and remember} \quad \ddot{x} = v \frac{dv}{dx} \]

\[\Rightarrow v \frac{dv}{dx} = -\omega^2 x \]

\[\Rightarrow \int v \, dv = \int -\omega^2 x \, dx \]

\[\Rightarrow \frac{1}{2} v^2 = -\frac{1}{2} \omega^2 x^2 + \frac{1}{2} c \]

But \(v = 0 \) when \(x \) is at its maximum, \(x = \pm a, \Rightarrow c = a^2 \omega^2 \)

\[\Rightarrow \frac{1}{2} v^2 = -\frac{1}{2} \omega^2 x^2 + \frac{1}{2} a^2 \omega^2 \]

\[\Rightarrow v^2 = \omega^2(a^2 - x^2) \]
Example: A particle is in simple harmonic motion about O. When it is 6 metres from O its speed is 4 m s^{-1}, and its deceleration is 1.5 m s^{-2}. Find the amplitude of the oscillation, and the greatest speed as it oscillates. Find also the time taken to move a total distance of 16 m starting from the furthest point from O.

Solution: We are told that $v = 4$ and $\ddot{x} = -1.5$ when $x = 6$

$$\ddot{x} = -\omega^2 x \quad \Rightarrow \quad -1.5 = -6\omega^2$$

$$\Rightarrow \quad \omega = \sqrt{0.25} = 0.5 \quad \text{taking positive value}$$

$$v^2 = \omega^2(a^2 - x^2)$$

$$\Rightarrow \quad 16 = 0.5^2(a^2 - 6^2)$$

$$\Rightarrow \quad a = 10 \quad \text{taking positive value}$$

Starting from the furthest point from O, we use $x = a \cos \omega t = 10 \cos 0.5t$

The particle starts at $x = +10$ so when the particle has moved 16 metres, $x = -6$

$$\Rightarrow \quad -6 = 10 \cos 0.5t$$

$$\Rightarrow \quad t = 2 \arccos(-0.6) = 4.43 \text{ seconds} \quad \text{to 3 S.F.}$$
Horizontal springs or strings

Example: Two identical springs, of natural length l and modulus λ, are joined at one end, and placed on a smooth, horizontal table. The two ends of the combined spring are fixed to two points, A and B, a distance $2l$ apart. A particle of mass m is attached to the springs at the midpoint of AB; the particle is then displaced a distance a towards B and released.

(a) Show that the particle moves under S.H.M.
(b) Find the period of the motion.
(c) Find the speed of the particle when it has moved through a distance of $1.5a$.

Solution: A good diagram is essential.

(a) Consider the mass at a displacement of x from O.
Note that you cannot work from $x = a$.

\[T_1 = \frac{\lambda x}{l} \] and is a tension: \[T_2 = \frac{\lambda x}{l} \] and is a thrust as we are dealing with springs

\[\text{Res} \rightarrow F = ma \quad \Rightarrow \quad -2 \times \frac{\lambda x}{l} = m\ddot{x} \]

\[\Rightarrow \quad \ddot{x} = -\frac{2\lambda}{ml} x \], which is the equation of S.H.M., with \[\frac{2\lambda}{ml} = \omega^2 \] \(\lambda, m \) and l are all positive

(Note that the diagram still works when the particle is on the left of O. x will be negative, and so both T_1 and T_2 will be negative, and will have become thrust and tension respectively.)

(b) The period is \[T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{ml}{2\lambda}} \]

(c) When the particle has moved $1.5a$, it is on the left of O and \(x = -0.5a \)

\[v^2 = \omega^2(\alpha^2 - x^2) \quad \Rightarrow \quad v^2 = \frac{2\lambda}{ml}(\alpha^2 - (-0.5a)^2) = \frac{3\lambda}{2ml}a^2 \]

\[\Rightarrow \quad v = \sqrt{\frac{3\lambda}{2ml}} a \]
Vertical strings or springs

In these problems your diagram should show clearly

- the natural length, \(l \)
- the extension, \(e \), to the equilibrium position, \(E \)
- the extension from the equilibrium position to the point \(P, x \).

Example: A mass of \(m \) hangs in equilibrium at the end of a vertical string, with natural length \(l \) and modulus \(\lambda \). The mass is pulled down a further distance \(a \) and released. Show that, with certain restrictions on the value of \(a \) which you should state, the mass executes S.H.M.

Solution:

In the equilibrium position, \(E \),

\[
\text{Res} \uparrow \quad T_e = \frac{\lambda e}{l} = mg
\]

After a further extension of \(x \), the particle is at \(P \),

\[
\text{Res} \downarrow \quad \text{N2L,} \quad mg - T = m\ddot{x}
\]

\[
\implies mg - \frac{\lambda(e+x)}{l} = m\ddot{x}
\]

\[
\implies \quad mg - \lambda e - \frac{\lambda x}{l} = m\ddot{x}
\]

\[
\implies \quad \ddot{x} = -\frac{\lambda}{lm} x \quad \text{since} \quad \frac{\lambda e}{l} = mg
\]

which is S.H.M., with \(\omega^2 = \frac{\lambda}{lm} \).

The amplitude will be \(a \), and, since this is a string, the mass will perform full S.H.M. only if \(a \leq e \).

Note

- If \(a > e \) the mass will perform S.H.M. as long as the string remains taut; when the string is not taut, the mass will move freely under gravity.
- If a spring is used then the mass will perform S.H.M. for any \(a \) (as long as the mass does not try to go above the top of the spring).
6 Motion in a circle 1

Angular velocity

A particle moves in a circle of radius \(r \) with constant speed, \(v \).

Suppose that in a small time \(\delta t \) the particle moves through a small angle \(\delta \theta \), then the distance moved will be \(\delta s = r \delta \theta \) and its speed \(v = \frac{\delta s}{\delta t} = r \frac{\delta \theta}{\delta t} \)

and, as \(\delta t \to 0 \), \(v = r \frac{d\theta}{dt} = r \dot{\theta} \)

\(\frac{d\theta}{dt} = \dot{\theta} \) is the angular velocity, usually written as the Greek letter omega, \(\omega \) and so, for a particle moving in a circle with radius \(r \), its speed is \(v = r \omega \)

Example: Find the angular velocity of the earth, and the speed of a man standing at the equator. The equatorial radius of the earth is 6378 km.

Solution: The earth rotates through an angle of \(2\pi \) radians in 24 hours

\[\Rightarrow \quad \omega = \frac{2\pi}{24 \times 3600} = 7.272205217 \times 10^{-5} = 7.27 \times 10^{-5} \text{ rad s}^{-1} \text{ to 3 S.F.} \]

A man standing at the equator will be moving in a great circle

\[\Rightarrow \quad \text{speed} \quad v = r \omega = 6378000 \times 7.272205217 \times 10^{-5} = 464 \text{ m s}^{-1} \text{ to 3 S.F.} \]

Acceleration

A particle moves in a circle of radius \(r \) with constant speed, \(v \).

Suppose that in a small time \(\delta t \) the particle moves through a small angle \(\delta \theta \), and that its velocity changes from \(\mathbf{v}_1 \) to \(\mathbf{v}_2 \),

then its change in velocity is \(\delta \mathbf{v} = \mathbf{v}_2 - \mathbf{v}_1 \), which is shown in the second diagram.

The lengths of both \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) are \(v \), and the angle between \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) is \(\delta \theta \). isosceles triangle

\[\Rightarrow \quad \delta \mathbf{v} = 2 \times v \sin \frac{\delta \theta}{2} = 2v \times \frac{\delta \theta}{2} = v \delta \theta \]

\[\Rightarrow \quad \frac{\delta \mathbf{v}}{\delta t} = v \frac{\delta \theta}{\delta t} \]

as \(\delta t \to 0 \), acceleration \(a = \frac{dv}{dt} = v \frac{d\theta}{dt} = v \dot{\theta} \)
But \(\dot{\theta} = \omega = \frac{v}{r} \Rightarrow a = \frac{v^2}{r} = r\omega^2 \)

Notice that as \(\delta\theta \to 0 \), the direction of \(\delta v \) becomes perpendicular to both \(v_1 \) and \(v_2 \), and so is directed towards the centre of the circle.

The acceleration of a particle moving in a circle with speed \(v \) is \(a = r\omega^2 = \frac{v^2}{r} \), and is directed towards the centre of the circle.

Alternative proof

If a particle moves, with constant speed, in a circle of radius \(r \) and centre \(O \), then its position vector can be written

\[
\mathbf{r} = r \left(\cos \theta \quad \sin \theta \right) \Rightarrow \dot{\mathbf{r}} = r \left(-\sin \theta \quad \cos \theta \right)
\]

since \(r \) is constant

Particle moves with constant speed \(\Rightarrow \dot{\theta} = \omega \) is constant

\[
\Rightarrow \quad \dot{\mathbf{r}} = r\omega \left(-\sin \theta \quad \cos \theta \right) \quad \Rightarrow \quad \text{speed is} \quad v = r\omega, \quad \text{and is along the tangent} \quad \text{since} \quad \mathbf{r} \cdot \dot{\mathbf{r}} = 0
\]

\[
\Rightarrow \quad \dot{\mathbf{r}} = r\omega \left(-\cos \theta \quad -\sin \theta \right) = -\omega^2 r \left(\cos \theta \quad \sin \theta \right) = -\omega^2 \mathbf{r}
\]

\(\Rightarrow \) acceleration is \(r\omega^2 \) (or \(\frac{v^2}{r} \)) directed towards \(O \). in opposite direction to \(\mathbf{r} \)

Motion in a horizontal circle

Example: A blob of mass of 3 kg is describing horizontal circles on a smooth, horizontal table. The blob does 10 revolutions each minute.

An elastic string of natural length 0·6 metres and modulus of elasticity 7·2 newtons is attached at one end to a fixed point \(O \) on the table. The other end is attached to the blob.

Find the full length of the string.

Solution: Let the extension of the string be \(x \).

\[
\lambda = 7.2, \quad l = 0.6, \quad m = 3 \\
\omega = \frac{10 \times 2\pi}{60} = \frac{\pi}{3} \text{ rad s}^{-1}
\]

Res \(\leftarrow \) N2L, \(T = mr\omega^2 = 3(0.6 + x) \times \left(\frac{\pi}{3} \right)^2 = (0.6 + x) \frac{\pi^2}{3} \)

Hooke’s Law \(\Rightarrow \quad T = \frac{7.2x}{0.6} = 12x \)

\(\Rightarrow \quad (0.6 + x) \frac{\pi^2}{3} = 12x \quad \Rightarrow \quad 0.6\pi^2 + x\pi^2 = 36x \)

\(\Rightarrow \quad x = \frac{0.6\pi^2}{36 - \pi^2} = 0.226623537 \)

\(\Rightarrow \) full length of string is \(0.6 + x = 0.827 \) to 3 s.f.
Conical pendulum

Example: An inextensible light string is attached at one end to a fixed point A, and at the other end to a bob of mass 3kg.

The bob is describing horizontal circles of radius 1.5 metres, with a speed of 4 m s^{-1}.

Find the angle made by the string with the downward vertical.

Solution: Acceleration $= \frac{v^2}{r} = \frac{4^2}{1.5} = \frac{32}{3}$, Res $\leftarrow \text{N2L, } T \sin \theta = 3 \times \frac{32}{3} = 32$

Res $\uparrow \quad T \cos \theta = 3g$

Dividing $\Rightarrow \tan \theta = \frac{32}{3g} = 1.08843…$

$\Rightarrow \theta = 47.4^o \text{ to 1 D.P.}$

Banking

Example: A car is travelling round a banked curve; the radius of the curve is 200 m and the angle of banking with the horizontal is 20^o. If the coefficient of friction between the tyres and the road is 0.6, find the maximum speed of the car in km h$^{-1}$.

Solution:

For maximum speed – (i) the friction must be acting down the slope and (ii) the friction must be at its maximum, μR.

$\Rightarrow F = 0.6R$ \hspace{1cm} I

Res \uparrow (perpendicular to the acceleration) $R \cos 20 = F \sin 20 + mg$ \hspace{1cm} II

Res \leftarrow, N2L, $F \cos 20 + R \sin 20 = m \frac{v^2}{200}$ \hspace{1cm} III

I and III $\Rightarrow m \frac{v^2}{200} = R (0.6 \cos 20 + \sin 20)$ \hspace{1cm} IV

I and II $\Rightarrow mg = R (\cos 20 - 0.6 \sin 20)$ \hspace{1cm} V

IV \div V $\Rightarrow \frac{v^2}{200g} = \frac{(0.6 \cos 20 + \sin 20)}{(\cos 20 - 0.6 \sin 20)}$

$\Rightarrow v = 49.16574344 \text{ m s}^{-1} = 176.9966764 \text{ km h}^{-1} = 180 \text{ km h}^{-1}$ to 2 S.F.
Inside an inverted vertical cone

Example: A particle is describing horizontal circles on the inside of an upside down smooth cone (dunce’s cap), at a height h above the vertex. Find the speed of the particle in terms of g and h.

Solution: At first, it seems as if there is not enough information. Put in letters and hope for the best!

Let the angle of the cone be 2θ, the radius of the circle in which the particle is moving r, the normal reaction R and the mass of the particle be m.

Res \leftarrow N2L, $R \cos \theta = m \frac{v^2}{r}$

Res \uparrow $R \sin \theta = mg$

Dividing \Rightarrow $\cot \theta = \frac{v^2}{rg}$

But $\cot \theta = \frac{h}{r}$

\Rightarrow $\frac{h}{r} = \frac{v^2}{rg}$

\Rightarrow $v^2 = gh$

\Rightarrow $v = \sqrt{gh}$
7 Motion in a circle 2

Motion in a vertical circle

When a particle is moving under gravity in a vertical circle, the speed is no longer constant. The ‘alternative proof’, given a few pages earlier, can easily be modified to show that the acceleration towards the centre is still \(\frac{v^2}{r} \), although there will be a component of the acceleration along the tangent (perpendicular to the radius) see below.

Proof that \(a = \frac{v^2}{r} \) for variable speed

If a particle moves in a circle of radius \(r \) and centre \(O \), then its position vector can be written

\[
\mathbf{r} = r \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}
\]

\(\Rightarrow \dot{\mathbf{r}} = r \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix} \dot{\theta} = r \dot{\theta} \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix} \) since \(r \) is constant

\(\Rightarrow \ddot{\mathbf{r}} = r \begin{pmatrix} -\cos \theta \dot{\theta}^2 - \sin \theta \ddot{\theta} \\ -\sin \theta \dot{\theta}^2 + \cos \theta \ddot{\theta} \end{pmatrix} = -r \dot{\theta}^2 \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} + r \ddot{\theta} \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix} \)

From this we can see that the speed is \(v = r \dot{\theta} = r \omega \),

and is perpendicular to the radius since \(\mathbf{r} \cdot \dot{\mathbf{r}} = 0 \)

We can also see that the acceleration has two components

\(r \dot{\theta}^2 = r \omega^2 = \frac{v^2}{r} \) towards the centre

and \(r \ddot{\theta} \) perpendicular to the radius which is what we should expect since \(v = r \dot{\theta} \), and \(r \) is constant.

In practice we shall only use \(a = r \omega^2 = \frac{v^2}{r} \), directed towards the centre of the circle.

Four types of problem

i) A particle attached to an inextensible string.

ii) A particle moving on the *inside* of a smooth, hollow sphere.

iii) A particle attached to a rod.

iv) A particle moving on the *outside* of a smooth sphere.

Types i) and ii) are essentially the same: the particle will make complete circles as long as it is moving fast enough to keep \(T \) or \(R \geq 0 \), where \(T \) is the tension in the string, or \(R \) is the normal reaction from the sphere.

Types iii) and iv) are similar when the particle is moving in the upper semi-circle, the thrust from a rod corresponds to the reaction from a sphere. *However* the particle will at some stage leave the surface of a sphere, *but* will always remain attached to a rod.

For a rod the particle will make complete circles as long as it is still moving at the top – the thrust from the rod will hold it up if it is moving slowly.

Don’t forget the work-energy equation – it could save you some work.
i Vertical motion of a particle attached to a string

Example: A small ball, \(B \), of mass 500 grams hangs from a fixed point, \(O \), by an inextensible string of length 2.5 metres. While the ball is in equilibrium it is given a horizontal impulse of magnitude 5 N s.

(a) Find the initial speed of the ball.
(b) Find the tension in the string when the string makes an angle \(\theta \) with the downwards vertical.
(c) Find the value of \(\theta \) when the string becomes slack.
(d) Find the greatest height reached by the ball above the lowest point.

Solution:

(a) \(I = m v - m u \Rightarrow 5 = \frac{1}{2} v \Rightarrow v = 10 \text{ m s}^{-1}. \)

(b) Suppose that the particle is moving with speed \(v \) at \(P \).

\[
\text{Res} \quad N2L, \quad T - \frac{1}{2} g \cos \theta = \frac{1}{2} \frac{v^2}{2.5}
\]

Gain in P.E. = \(\frac{1}{2} g \times (2.5 - 2.5 \cos \theta) \)

From the work-energy equation

\[
\frac{1}{2} \times \frac{1}{2} v^2 = \frac{1}{2} \times \frac{1}{2} \times 10^2 - \frac{1}{2} g \times 2.5(1 - \cos \theta)
\]

\(\Rightarrow v^2 = 100 - 5g + 5g \cos \theta \quad \text{....... I} \)

\(\Rightarrow T = \frac{1}{2} g \cos \theta + \frac{1}{2} \left(\frac{100 - 5g + 5g \cos \theta}{2.5} \right)
\]

\(= \frac{1}{2} g \cos \theta + 20 - g + g \cos \theta \)

\(\Rightarrow T = 14.7 \cos \theta + 10.2 \)

Notice that this still describes the situation when \(\theta > 90^\circ \), since \(\cos \theta \) will be negative.

(c) The string will become slack when there is no tension

\(\Rightarrow T = 14.7 \cos \theta + 10.2 = 0 \)

\(\Rightarrow \cos \theta = -\frac{10.2}{14.7} \)

\(\Rightarrow \theta = 133.9378399 = 133.9^\circ \quad \text{to the nearest tenth of a degree.} \)
At the greatest height, the speed will **not** be zero, so we cannot use energy to get straight to the final answer. Therefore we need to ‘**stop and start again**’.

We know that \(v^2 = 100 - 5g + 5g \cos \theta \), from I, and that \(\cos \theta = -\frac{10^{2}}{14^{2}} \) at \(P \),

\[
\Rightarrow v = \sqrt{17}
\]

\[
\Rightarrow \text{initial vertical component of velocity is } u = \sqrt{17} \cos \theta
\]

final vertical component of velocity = 0, and \(g = -9.8 \)

Using \(v^2 = u^2 + 2as \) we get \(s = 0.417598109… \)

The height of \(P \) above \(A \) is \(2 \times 5 - 2 \times 5 \cos \theta = 4.234693898 \)

\[
\Rightarrow \text{the greatest height of the ball above } A \text{ is } 4.7 \text{ m to 2 S.F.}
\]

ii Vertical motion of a particle inside a smooth sphere

Example: A particle is moving in a vertical circle inside a smooth sphere of radius \(a \). At the lowest point of the sphere, the speed of the particle is \(U \). What is the smallest value of \(U \) which will allow the particle to move in complete circles.

Solution: Suppose the particle is moving with speed \(v \) when it reaches the top of the sphere, and that the normal reaction of the sphere on the particle is \(R \).

\[
\text{Res} \downarrow N2L, \quad R + mg = m \frac{v^2}{a}
\]

For the particle to remain in contact with the sphere (i.e. to make complete circles), \(R \geq 0 \)

\[
\Rightarrow v^2 \geq ag
\]

From the lowest point, \(A \), to the top, the gain in P.E. is \(m \times g \times 2a = 2mga \)

The work-energy equation gives

\[
\frac{1}{2} mv^2 = \frac{1}{2} mU^2 - 2mga
\]

\[
\Rightarrow U^2 = v^2 + 4ga \geq 5ag \quad \text{since } v^2 \geq ag
\]

Note that if \(U^2 = 5ag \) the particle will still be moving at the top \((v = \sqrt{ag}) \), and so will make complete circles \(\Rightarrow \) For complete circles, \(U \geq \sqrt{5ag} \).

Note that the method is **exactly the same** for a particle attached to a string, replacing the reaction, \(R \), by the tension, \(T \).
iii Vertical motion of a particle attached to a rigid rod

Example: A particle is attached to a rigid rod and is moving in a vertical circle of radius \(a\). At the lowest point of the circle, the speed of the particle is \(U\). What is the smallest value of \(U\) which will allow the particle to move in complete circles.

Solution: As long as the particle is still moving at the top of the circle, it will make complete circles. Let \(v\) be the speed of the particle at the top of the circle.

If the particle is moving slowly \((v^2 < ag - \text{see previous example})\), the force in the rod will be a thrust, \(T\), and will prevent it from falling into the circle.

If \(v = 0\), it will stop at the top,
\[\Rightarrow \quad \text{for complete circles} \quad v > 0\]

From the lowest point, \(A\), to the top the gain in P.E. is \(m \times g \times 2a = 2mga\)

The work-energy equation gives

\[
\frac{1}{2} mv^2 = \frac{1}{2} mU^2 - 2mga
\]

\[\Rightarrow \quad U^2 = v^2 + 4ga > 4ag \quad \text{since} \quad v^2 > 0\]

\[\Rightarrow \quad \text{For complete circles,} \quad U > 2\sqrt{ag} .\]
iv Vertical motion of a particle on the outside of a smooth sphere

Example: A smooth hemisphere of radius \(a \) is placed on horizontal ground. A small bead of mass \(m \) is placed at the highest point and then dislodged. \(\theta \) is the angle made between the line joining the centre of the hemisphere to the bead with the upward vertical.

(a) Find the force of reaction between the bead and the hemisphere, in terms of \(m, g, a \) and \(\theta \).

(b) Find the value of \(\theta \) when the bead leaves the surface of the hemisphere.

(c) Find the speed with which the bead strikes the ground.

Solution:

(a) When the angle is \(\theta \), assuming the bead is still in contact with the sphere,

\[
P.E. \text{ lost } = mg(a - a \cos \theta)
\]

Work-energy equation

\[
\frac{1}{2}mv^2 = 0 + mga(1 - \cos \theta) \quad \Rightarrow \quad v^2 = 2ga(1 - \cos \theta) \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text{I}
\]

Res \(\nabla \) N2L, \(mg \cos \theta - R = m \frac{v^2}{a} \)

\[
\Rightarrow \quad R = mg \cos \theta - m \frac{v^2}{a} \quad \ldots \ldots \ldots \ldots \ldots \text{II}
\]

I and II \(\Rightarrow \quad R = mg \cos \theta - 2mg(1 - \cos \theta) \)

\[
\Rightarrow \quad R = mg(3\cos \theta - 2)
\]

(b) \(R \) can never be negative, and so the bead will leave the hemisphere when \(R = 0 \)

\[
\Rightarrow \quad \cos \theta = \frac{2}{3}
\]

\[
\Rightarrow \quad \theta = 48.2^\circ \quad \text{to the nearest tenth of a degree.}
\]

(c) The only force doing work as the particle falls from the top of the hemisphere to the ground is gravity. Note that \(R \) is always perpendicular to the path and so does no work.

P.E. lost = \(mga \), \(v \) is speed with which the particle hits the ground

Work-energy equation gives

\[
\frac{1}{2}mv^2 = 0 + mga
\]

\[
\Rightarrow \quad v = \sqrt{2ag}
\]
8 Centres of mass

When finding a centre of mass

Centres of mass depend on the formula \(M\bar{x} = \sum m_ix_i \), or similar.

Remember that \(\lim_{\delta x \to 0} \sum f(x_i)\delta x = \int f(x) \, dx \).

Centre of mass of a lamina

Example:

A uniform lamina is bounded by the parabola \(y^2 = x \) and the line \(x = 4 \), and has surface density \(\rho \).

By symmetry \(\bar{y} = 0 \).

1) To find the mass of the lamina, \(M \)

\[
M = \text{Area} \times \text{density} = 2\rho \int_0^4 \sqrt{x} \, dx = \left[\frac{4}{3} \rho x^{3/2} \right]_0^4 = \frac{32}{3} \rho
\]

2) To find \(\bar{x} \), first choose an element with constant \(x \) co-ordinate throughout.

Take a strip parallel to the \(y \)-axis, a distance of \(x_i \) from the \(x \)-axis and width \(\delta x \).

This strip is approximately a rectangle of length \(2y_i \) and width \(\delta x \).

\[\Rightarrow \text{Area of strip} \approx 2y_i \delta x \]

\[\Rightarrow \text{mass of strip} = m_i \approx 2y_i\rho \delta x \]

\[\Rightarrow \sum_0^4 m_ix_i \approx \sum_0^4 2y_i\rho x_i \delta x \]

We know that \(y = \sqrt{x} \) and we let \(\delta x \to 0 \)

\[\Rightarrow \sum_0^4 m_ix_i = \sum_0^4 2y_i\rho x_i \delta x \to \int_0^4 2\rho x^{3/2} \, dx = \left[\frac{4}{5} \rho x^{5/2} \right]_0^4 = \frac{128}{5} \rho \]

\[\Rightarrow \bar{x} = \frac{\sum m_ix_i}{M} = \frac{128}{5} \rho \cdot \frac{32}{3} \rho = \frac{12}{5} = 2 \cdot 4 \]

\[\Rightarrow \text{centre of mass of the lamina is at} \ (2.4, 0).\]
Example: A uniform lamina is bounded by the \(x \)- and \(y \)-axes and the part of the curve \(y = \cos x \) for which \(0 \leq x \leq \frac{\pi}{2} \). Find the coordinates of its centre of mass.

Solution: The figure shows the lamina and a typical strip of width \(\delta x \) and height \(\cos x \), with surface density \(\rho \).

1) To find the mass.

\[
M = \rho \int_{0}^{\pi/2} \cos x \, dx = \rho [\sin x]_{0}^{\pi/2} = \rho
\]

2) To find \(\bar{x} \), first choose an element with constant \(x \) co-ordinate throughout.

Take a strip parallel to the \(y \)-axis, a distance of \(x_i \) from the \(x \)-axis and width \(\delta x \).

This strip is approximately a rectangle of length \(y_i \) and width \(\delta x \).

mass of typical strip = \(m_i \approx y_i \rho \delta x \)

\[
\Rightarrow \sum_{0}^{\pi/2} m_i x_i \approx \sum_{0}^{\pi/2} y_i \rho x_i \delta x
\]

We know that \(y = \cos x \) and we let \(\delta x \to 0 \)

\[
\Rightarrow \bar{x} = \frac{\sum_{0}^{\pi/2} m_i x_i}{M} = \frac{\rho \left(\frac{\pi}{2} - 1 \right)}{\rho} = \frac{\pi}{2} - 1
\]

3) To find \(\bar{y} \) we can use the same strips, because the centre of mass of each strip is approximately \(\frac{1}{2} y_i \) from the \(x \)-axis; we can now consider each strip as a point mass, \(m_i \approx y_i \rho \delta x \), at a distance \(\frac{1}{2} y_i \) from the \(x \)-axis.

\[
\Rightarrow \sum_{0}^{\pi/2} m_i y_i \approx \sum_{0}^{\pi/2} y_i \rho \times \frac{1}{2} y_i \delta x
\]

We know that \(y = \cos x \) and we let \(\delta x \to 0 \)

\[
\Rightarrow \bar{y} = \frac{\sum_{0}^{\pi/2} m_i y_i}{M} = \frac{1}{8} \rho \pi \frac{\rho}{\rho} = \frac{\pi}{8}
\]

\[
\Rightarrow \text{centre of mass is at } \left(\frac{\pi}{2} - 1, \frac{\pi}{8} \right)
\]
Example: A uniform lamina occupies the closed region bounded by the curve $y = \sqrt{2 - x}$, the line $y = x$ and the x-axis. Find the coordinates of its centre of mass.

Solution:

1) To find the mass, M.

 The area = area of triangle + area under curve

 \[M = \rho \left(\frac{1}{2} \times 1 \times 1 + \int_1^2 \sqrt{2 - x} \, dx \right) = \frac{7}{6} \rho \]

 which I am too lazy to do!

2) To find \bar{y}.

 The typical strip is approximately a rectangle of length $x_2 - x_1$ and height δy, with a constant y-coordinate.

 The mass of the strip is $m_i = \rho (x_2 - x_1) \delta y$.

 But $x_2 = 2 - y^2$ (lies on the curve $y = \sqrt{2 - x}$), and $x_1 = y$ (lies on $y = x$)

 \[m_i = \rho (2 - y_i^2 - y_i) \delta y \]

 \[\sum_{i=0}^{1} m_i y_i \approx \sum_{i=0}^{1} \rho (2 - y_i^2 - y_i) y_i \delta y \]

 \[\lim_{\delta y \to 0} \sum_{i=0}^{1} m_i y_i = \int_{0}^{1} \rho (2 - y^2) y \, dy = \frac{5}{12} \rho \]

 you ought to do this one!

 \[\bar{y} = \frac{1}{M} \sum_{i=0}^{1} m_i y_i = \frac{\frac{5}{12} \rho \frac{7}{6}}{\frac{7}{6}} = \frac{5}{14} \]
3) To find the centre of mass of the typical strip is \(\frac{1}{2} (x_2 + x_1) \) from the y-axis (mid-point of strip) and \(m_i = \rho (x_2 - x_1) \delta y \) as before.

we can now consider each strip as a point mass, \(m_i \approx \rho (x_2 - x_1) \delta y \), at a distance \(\frac{1}{2} (x_2 + x_1) \) from the y-axis.

\[
\Rightarrow \sum m_i x_i = \sum_0^1 \rho (x_2 - x_1) \delta y \times \frac{1}{2} (x_2 + x_1)
\]

But \((x_2 - x_1) (x_2 + x_1) = x_2^2 - x_1^2 = (2 - y^2)^2 - y^2 = 4 - 5y^2 + y^4 \) and the limits go from 0 to 1 because the \(\delta y \) means we are summing in the y direction.

\[
\Rightarrow \sum m_i x_i = \sum_0^1 \frac{1}{2} \rho (4 - 5y^2 + y^4) \delta y
\]

\[
\lim_{\delta y \to 0} \sum_0^1 m_i x_i = \int_0^1 \frac{1}{2} \rho (4 - 5y^2 + y^4) \, dy = \frac{19}{15} \rho
\]

\[
\Rightarrow \bar{x} = \frac{1}{M} \sum_0^1 m_i x_i = \frac{19}{15} \frac{\rho}{6} = \frac{38}{35}
\]

\[
\Rightarrow \text{the centre of mass is at } \left(\frac{38}{35}, \frac{5}{14} \right).
\]

Centre of mass of a sector

In this case we can find a nice method, using the result for the centre of mass of a triangle.

We take a sector of angle \(2\alpha \) and divide it into many smaller sectors.

Mass of whole sector = \(M = \frac{1}{2} r^2 \times 2\alpha \times \rho = r^2 \alpha \rho \)

Consider each small sector as approximately a triangle, with centre of mass, \(G_i \), along the median from O.

Working in polar coordinates for one small sector, \(m_i = \frac{1}{2} r^2 \rho \, \delta \theta \)

\[
OP = r \Rightarrow OG_1 \cong \frac{2}{3} r \quad \Rightarrow \quad x_i \cong \frac{2}{3} r \cos \theta
\]

\[
\Rightarrow \lim_{\delta \theta \to 0} \sum_{\theta = -\alpha}^{\alpha} m_i x_i = \int_{-\alpha}^{\alpha} \frac{1}{2} r^2 \rho \times \frac{2}{3} r \cos \theta \, d\theta = \frac{2}{3} r^3 \rho \sin \alpha
\]

\[
\Rightarrow \bar{x} = \frac{\sum m_i x_i}{M} = \frac{2}{3} \frac{r^3 \rho \sin \alpha}{r^2 \alpha \rho} = \frac{2r \sin \alpha}{3 \alpha}
\]

By symmetry, \(\bar{y} = 0 \)

\[
\Rightarrow \text{centre of mass is at } \left(\frac{2r \sin \alpha}{3 \alpha}, 0 \right)
\]
Centre of mass of a circular arc

For a circular arc of radius \(r \) which subtends an angle of \(2\alpha \) at the centre.

The length of the arc is \(r \times 2\alpha \)
\(\Rightarrow \) mass of the arc is \(M = 2\alpha r\rho \)

First divide the arc into several small pieces, each subtending an angle of \(\delta\theta \) at the centre.

The length of each piece is \(r\delta\theta \) \(\Rightarrow m_i = r\rho \delta\theta \)

We now think of each small arc as a point mass at the centre of the arc, with \(x \)-coordinate \(x_i = r\cos\theta \)

\[\Rightarrow \lim_{\delta\theta \to 0} \sum_{\theta=-\alpha}^{\alpha} m_i x_i = \int_{-\alpha}^{\alpha} r\rho \times r \cos \theta \, d\theta \]
\[= 2r^2 \rho \sin\alpha \]
\[\Rightarrow \bar{x} = \frac{\sum m_i x_i}{M} = \frac{2r^2 \rho \sin\alpha}{2\alpha r\rho} = \frac{r \sin\alpha}{\alpha} \]
By symmetry, \(\bar{y} = 0 \)
\(\Rightarrow \) centre of mass is at \(\left(\frac{r \sin\alpha}{\alpha}, 0 \right) \)

Standard results for centre of mass of uniform laminas and arcs

- **Triangle**
 \(\frac{2}{3} \) of the way along the median, from the vertex.

- **Semi-circle, radius \(r \)**
 \(\frac{4r}{3\pi} \) from centre, along axis of symmetry

- **Sector of circle, radius \(r \), angle \(2\alpha \)**
 \(\frac{2r \sin\alpha}{3\alpha} \) from centre, along axis of symmetry

- **Circular arc, radius \(r \), angle \(2\alpha \)**
 \(\frac{r \sin\alpha}{\alpha} \) from centre, along axis of symmetry
Centres of mass of compound laminas

The secret is to form a table showing the mass, or mass ratio, and position of the centre of mass for each component. Then use

\[\bar{x} = \frac{\sum m_i x_i}{M}, \quad \bar{y} = \frac{\sum m_i y_i}{M} \]

to find the centre of mass of the compound body.

Example: A semi-circle of radius \(r \) is cut out from a uniform semi-circular lamina of radius \(2r \). Find the position of the centre of mass of the resulting shape.

Solution:

By symmetry the centre of mass will lie on the axis of symmetry, \(OA \).

The mass of the compound shape is

\[M = \frac{1}{2} (4\pi r^2 - \pi r^2) \rho = \frac{3}{2} \pi r^2 \rho \]

and the centre of mass of a semi-circle is \(\frac{4r}{3\pi} \) from the centre.

\[\text{compound shape} + \text{small semi-circle} = \text{large semi-circle} \]

\[
\begin{align*}
\text{Mass} & \quad \frac{3}{2} \pi r^2 \rho + \frac{1}{2} \pi r^2 \rho = 2\pi r^2 \rho \\
\text{Distance above } O & \quad \bar{y} + \frac{4r}{3\pi} = \frac{8r}{3\pi} \\
\Rightarrow & \quad \frac{3}{2} \pi r^2 \rho \times \bar{y} + \frac{1}{2} \pi r^2 \rho \times \frac{4r}{3\pi} = 2\pi r^2 \rho \times \frac{8r}{3\pi} \\
\Rightarrow & \quad \bar{y} = \frac{28}{9} r \\
\end{align*}
\]

The centre of mass lies on the axis of symmetry, at a distance of \(\frac{28}{9} r \) from the centre.
Centre of mass of a solid of revolution

Example: A machine component has the shape of a uniform solid of revolution formed by rotating the region under the curve \(y = \sqrt{9 - x} \), \(x \geq 0 \), about the \(x \)-axis. Find the position of the centre of mass.

Solution:

![Diagram of a solid of revolution]

Mass, \(M \), of the solid = \(\rho \int_0^9 \pi y^2 \, dx = \rho \int_0^9 \pi (9 - x) \, dx \)

\[M = \frac{81}{2} \rho \pi. \]

The diagram shows a typical thin disc of thickness \(\delta x \) and radius \(y = \sqrt{9 - x} \).

\[\Rightarrow \text{Mass of disc} \approx \rho \pi y^2 \delta x = \rho \pi (9 - x) \delta x \]

Note that the \(x \) coordinate is the same (nearly) for all points in the disc

\[\Rightarrow \sum_{x_i} m_i x_i \approx \sum_{x_i} \rho \pi (9 - x_i) x_i \delta x \]

\[\lim_{\delta x \to 0} \sum_{x_i} m_i x_i = \int_0^9 \rho \pi (9 - x) x \, dx = \frac{243}{2} \rho \pi \]

\[\Rightarrow \bar{x} = \frac{\sum_{x_i} m_i x_i}{M} = \frac{\frac{243}{2} \rho \pi}{\frac{81}{2} \rho \pi} = 3 \]

By symmetry, \(\bar{y} = 0 \)

\[\Rightarrow \text{the centre of mass is on the } x \text{-axis, at a distance of 3 from the origin.} \]
Centre of mass of a hemispherical shell – method 1a

This method needs techniques for finding the surface area of a solid of revolution from FP3.

Preliminary result

Take a small section of a curve of length δs and the corresponding lengths δx and δy, as shown in the diagram.

A very small section of curve will be nearly straight, and we can form a ‘triangle’.

\[\delta s^2 \approx \delta x^2 + \delta y^2 \]

\[\left(\frac{\delta s}{\delta x} \right)^2 \approx 1 + \left(\frac{\delta y}{\delta x} \right)^2 \]

and as $\delta x \to 0$,
\[\frac{ds}{dx} = \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \]

Mass of shell

Let the density of the shell be ρ, radius r

In the xy-plane, the curve has equation

\[x^2 + y^2 = r^2 \]

\[2x + 2y \frac{dy}{dx} = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{x}{y} \]

\[\left(\frac{ds}{dx} \right) = \sqrt{1 + \left(\frac{dy}{dx} \right)^2} = \sqrt{\frac{y^2 + x^2}{y^2}} \]

Take a slice perpendicular to the x-axis through the point (x_i, y_i) to form a ring with arc length δs.

Area of the ring $\approx 2 \pi y_i \delta s$ \quad \Rightarrow \quad mass of ring $m_i \approx 2 \pi y_i \rho \delta s$

\[\Rightarrow \text{Total mass} \quad \approx \sum 2\pi y_i \rho \, \delta s \]

\[\Rightarrow \text{Total mass} \quad M = \lim_{\delta s \to 0} \sum 2\pi y_i \rho \, \delta s \quad = \int 2\pi y \rho \, ds \]

\[M = \int_0^r 2\pi y \rho \frac{ds}{dx} \, dx \quad = \quad \int_0^r 2\pi y \rho \sqrt{\frac{y^2 + x^2}{y^2}} \, dx \]

\[M = \int_0^r 2\rho \sqrt{r^2 - x^2} \, dx \quad = \quad 2\pi \rho r \left[x \right]_0^r \quad = \quad 2\pi \rho r^2 \]
To find \(\sum m_i x_i = \sum 2\pi y_i \rho \delta s x_i \)

\[\Rightarrow \lim_{\delta s \to 0} \sum 2\pi y_i \rho \delta s x_i = \int_0^r 2\pi \rho y x \frac{ds}{dx} \, dx \]

\[= \int_0^r 2\pi \rho y x \sqrt{\frac{y^2 + x^2}{y^2}} \, dx = 2\pi \rho r \left[\frac{x^2}{2} \right]_0^r = \pi \rho r^3 \]

\[\Rightarrow \bar{x} = \frac{\sum m_i x_i}{M} = \frac{\pi \rho r^3}{2\pi \rho r^2} = \frac{r}{2} \]

\[\Rightarrow \text{the centre of mass is on the line of symmetry at a distance of } \frac{1}{2} r \text{ from the centre.} \]

Centre of mass of a hemispherical shell – method 1b

This method is similar to method 1a but does not need FP3 techniques, so is suitable for people who have not done FP3 (I think it is preferable to method 2 – see later).

Mass of shell

Let the density of the shell be \(\rho \), radius \(r \)

Take a slice perpendicular to the \(x \)-axis through the point \((x_i, y_i)\) to form a ring with arc length \(r \delta \theta \), and circumference \(2\pi y \). This can be ‘flattened out’ to form a rectangle of length \(2\pi y \) and height \(r \delta \theta \)

Area of the ring \(\approx \)

\[\Rightarrow \text{mass of ring } m_i \approx 2\pi \rho y r x \delta \theta \]

\[\Rightarrow \text{Total mass } M = \lim_{\delta \theta \to 0} \sum 2\pi \rho y r x \delta \theta = \int 2\pi \rho y r d\theta \]

But \(y = r \sin \theta \)

\[\Rightarrow M = \int_0^{\pi/2} 2\pi r^2 \sin \theta \rho \, d\theta = 2\pi \rho r^2 \left[\frac{\pi}{2}\cos \theta \right]_0^{\pi/2} = 2\pi \rho r^2 \]

To find \(\sum m_i x_i = \sum 2\pi y_i r \rho \delta \theta x_i \)

\[\Rightarrow \lim_{\delta \theta \to 0} \sum 2\pi y_i r \rho \delta s x_i = \int_0^{\pi/2} 2\pi \rho r y x \, d\theta \]

But \(x = r \cos \theta \) and \(y = r \sin \theta \)
\[\Rightarrow \sum m_i x_i = \int_0^\pi 2\pi \rho r^3 \sin \theta \cos \theta \ d\theta \]

\[= \pi \rho r^3 \left[-\frac{\cos 2\theta}{2} \right]_0^\pi = \pi \rho r^3 \]

\[\Rightarrow \bar{x} = \frac{\sum m_i x_i}{M} = \frac{\pi \rho r^3}{2\pi \rho r^2} = \frac{r}{2} \]

\[\Rightarrow \text{the centre of mass is on the line of symmetry at a distance of } \frac{1}{2} r \text{ from the centre.} \]

Centre of mass of a conical shell

To find the centre of mass of a conical shell, or the surface of a cone, we divide the surface into small sectors, one of which is shown in the diagram.

We can think the small sector as a triangle with centre of mass at \(G_1 \), where \(OG_1 = \frac{2}{3} OP \).

This will be true for all the small sectors, and the \(x \)-coordinate, \(x_1 \), of each sector will be the same

\[\Rightarrow \text{the } x \text{-coordinate of the shell will also be } x_1 \]

As the number of sectors increase, the approximation gets better, until it is exact, and as \(OG_1 = \frac{2}{3} OP \) then \(OG = \frac{2}{3} OA \) (similar triangles)

\[\Rightarrow \text{the centre of mass of a conical shell is on the line of symmetry, at a distance of } \frac{2}{3} \text{ of the height from the vertex.} \]
Centre of mass of a square based pyramid

A square based pyramid has base area A and height h

The centre of mass is on the line of symmetry

\Rightarrow volume $= \frac{1}{3} Ah$

\Rightarrow mass $M = \frac{1}{3} Ah\rho$

Take a slice of thickness δx at a distance x_i from O

The base of the slice is an enlargement of the base of the pyramid with scale factor $\frac{x_i}{h}$

\Rightarrow ratio of areas is $\left(\frac{x_i}{h}\right)^2$

\Rightarrow area of base of slice is $\frac{x_i^2}{h^2}A$

\Rightarrow mass of slice $m_i = \delta x$

$\Rightarrow \lim_{\delta x \to 0} \sum_{x=0}^{h} m_i x_i = \int_{0}^{h} \frac{h^3}{h^2} A \rho \, dx = \frac{1}{4} h^2 A \rho$

$\Rightarrow \bar{x} = \frac{\sum m_i x_i}{M} = \frac{\frac{1}{4} h^2 A \rho}{\frac{1}{3} A h \rho} = \frac{3}{4} h$

The centre of mass lies on the line of symmetry at a distance $\frac{3}{4} h$ from the vertex.

The above technique will work for a pyramid with any shape of base.

The centre of mass of a pyramid with any base has centre of mass $\frac{3}{4}$ of the way along the line from the vertex to the centre of mass of the base (considered as a lamina).

There are more examples in the book, but the basic principle remains the same:

- find the mass of the shape, M
- choose, carefully, a typical element, and find its mass (involving δx or δy)
- for solids of revolution about the x-axis (or y-axis), choose a disc of radius y and thickness δx, (or radius x and thickness δy).
- find $\sum m_i x_i$ or $\sum m_i y_i$
- let δx or $\delta y \to 0$, and find the value of the resulting integral
- $\bar{x} = \frac{1}{M} \sum m_i x_i$, $\bar{y} = \frac{1}{M} \sum m_i y_i$
Standard results for centre of mass of uniform bodies

Solid hemisphere, radius \(r \)
\[\frac{3r}{8} \text{ from centre, along axis of symmetry} \]

Hemispherical shell, radius \(r \)
\[\frac{\rho}{3} \text{ from centre, along axis of symmetry} \]

Solid right circular cone, height \(h \)
\[\frac{2h}{3} \text{ from vertex, along axis of symmetry} \]

Conical shell, height \(h \)
\[\frac{2h}{3} \text{ from vertex, along axis of symmetry} \]

Centres of mass of compound bodies

This is very similar to the technique for compound laminas.

Example: A solid hemisphere of radius \(a \) is placed on a solid cylinder of height \(2a \). Both objects are made from the same uniform material. Find the position of the centre of mass of the compound body.

Solution:

By symmetry the centre of mass of the compound body, \(G \), will lie on the axis of symmetry.

The mass of the hemisphere is \(\frac{2}{3} \pi a^3 \rho \) at \(G_1 \), and the mass of the cylinder is \(\pi a^2 \times 2a \rho = 2\pi a^3 \rho \) at \(G_2 \)

\[\Rightarrow \text{mass of the compound shape is} \]
\[M = \frac{8}{3} \pi a^3 \rho, \]

\[OG_1 = \frac{3a}{8}, \quad \text{and} \quad OG_2 = a \]

Now draw up a table

<table>
<thead>
<tr>
<th>Body</th>
<th>hemisphere + cylinder = compound body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>(\frac{2}{3} \pi a^3 \rho) \hspace{1cm} (2\pi a^3 \rho) \hspace{1cm} (\frac{8}{3} \pi a^3 \rho)</td>
</tr>
<tr>
<td>Distance above (O)</td>
<td>(\frac{3a}{8}) \hspace{1cm} (-a) \hspace{1cm} (\bar{y})</td>
</tr>
</tbody>
</table>

\[\Rightarrow \quad \frac{2}{3} \pi a^3 \rho \times \frac{3a}{8} + 2\pi a^3 \rho \times (-a) = \frac{8}{3} \pi a^3 \rho \times \bar{y} \]

\[\Rightarrow \quad \bar{y} = -\frac{21}{32} a \]

\[\Rightarrow \quad \text{centre of mass is at } G, \text{ below } O, \text{ where } OG = \frac{21}{32} a, \text{ on the axis of symmetry.} \]
Centre of mass of a hemispherical shell – method 2

Note: if you use this method in an exam question which asks for a calculus technique, you would have to use calculus to prove the results for a solid hemisphere first.

The best technique for those who have not done FP3 is method 1b.

We can use the theory for compound bodies to find the centre of mass of a hemispherical shell.

From a hemisphere with radius \(r + \delta r \) we remove a hemisphere with radius \(r \), to form a hemispherical shell of thickness \(\delta r \) and inside radius \(r \).

\[
\begin{align*}
\text{radius} &
\quad (r + \delta r) &
\quad r &
\quad \text{equals} &
\quad r
\end{align*}
\]

\[
\begin{align*}
\text{Mass} &
\quad \frac{2}{3} \pi (r + \delta r)^3 \rho &
\quad \frac{2}{3} \pi r^3 \rho &
\quad \frac{2}{3} \pi (r + \delta r)^3 \rho - \frac{2}{3} \pi r^3 \rho
\end{align*}
\]

\[
\begin{align*}
\text{centre of mass} &
\quad \frac{3}{8} (r + \delta r) &
\quad \frac{3}{8} r &
\quad \bar{y}
\end{align*}
\]

\[
\begin{align*}
\Rightarrow &\quad \frac{2}{3} \pi (r + \delta r)^3 \rho \times \frac{3}{8} (r + \delta r) - \frac{2}{3} \pi r^3 \rho \times \frac{3}{8} r = \left\{ \frac{2}{3} \pi (r + \delta r)^3 \rho - \frac{2}{3} \pi r^3 \rho \right\} \bar{y} \\
\Rightarrow &\quad \frac{1}{4} \pi \rho \left(r^4 + 4r^3 \delta r \ldots - r^4 \right) = \frac{2}{3} \pi \rho \left(r^3 + 3r^2 \delta r \ldots - r^3 \right) \bar{y} \quad \text{ignoring} \ (\delta r)^2 \text{ and higher}
\Rightarrow &\quad r^3 \delta r \approx 2r^2 \delta r \bar{y}
\text{and as} &\quad \delta r \to 0, \ \bar{y} = \frac{1}{2} r
\end{align*}
\]

The centre of mass of a hemispherical is on the line of symmetry, \(\frac{1}{2} r \) from the centre.
Tilting and hanging freely

Tilting

Example: The compound body of the previous example is placed on a slope which makes an angle θ with the horizontal. The slope is sufficiently rough to prevent sliding. For what range of values of θ will the body remain in equilibrium.

Solution: The body will be on the point of tipping when the centre of mass, G, lies vertically above the lowest corner, A.

Centre of mass is $2a - \frac{21}{32}a = \frac{43}{32}a$ from the base

At this point

$$\tan \theta = \frac{a}{\frac{43a}{32}} = \frac{32}{43}$$

$\Rightarrow \theta = 36\cdot65610842$

The body will remain in equilibrium for

$\theta \leq 36\cdot7^\circ$ to the nearest 0.1$^\circ$.
Hanging freely under gravity

This was covered in M2. For a body hanging freely from a point A, you should always state, or show clearly in a diagram, that AG is vertical – this is the only piece of mechanics in the question!

Body with point mass attached hanging freely

The best technique will probably be to take moments about the point of suspension.

Example: A solid hemisphere has centre O, radius a and mass $2M$. A particle of mass M is attached to the rim of the hemisphere at P.

The compound body is freely suspended under gravity from O. Find the angle made by OP with the horizontal.

Solution: As usual a good, large diagram is essential.

Let the angle made by OP with the horizontal be θ, then $\angle OGL = \theta$.

We can think of the hemisphere as a point mass of $2M$ at G, where $OG = \frac{3a}{8}$.

The perpendicular distance from O to the line of action of $2Mg$ is $OL = \frac{3a}{8} \sin \theta$, and

the perpendicular distance from O to the line of action of Mg is $OK = a \cos \theta$

Taking moments about O

$$2Mg \times \frac{3a}{8} \sin \theta = Mg \times a \cos \theta$$

$$\Rightarrow \quad \tan \theta = \frac{4}{3}$$

$$\Rightarrow \quad \theta = 53.1^\circ.$$
Hemisphere in equilibrium on a slope

Example: A uniform hemisphere rests in equilibrium on a slope which makes an angle of 20° with the horizontal. The slope is sufficiently rough to prevent the hemisphere from sliding. Find the angle made by the flat surface of the hemisphere with the horizontal.

Solution: Don’t forget the basics.

The centre of mass, G, must be vertically above the point of contact, A. If it was not, there would be a non-zero moment about A and the hemisphere would not be in equilibrium.

BGA is a vertical line, so we want the angle θ.

OA must be perpendicular to the slope (radius \perp tangent), and with all the 90° angles around A, $\angle OAG = 20°$.

Let a be the radius of the hemisphere then $OG = \frac{3a}{8}$ and, using the sine rule

$$\frac{\sin \angle OGA}{a} = \frac{\sin 20°}{\frac{3a}{8}} \Rightarrow \angle OGA = 65.790° \ldots \text{ or } 114.209° \ldots$$

Clearly $\angle OGA$ is obtuse $\Rightarrow \angle OGA = 114.209° \ldots$

$\Rightarrow \angle OBG = 114.209° \ldots - 90° = 24.209° \ldots$

$\Rightarrow \theta = 90° - 24.209° = 65.8°$ to the nearest $0.1°$.
Index

Acceleration
\[v \frac{dv}{dx}, 3 \]
\[x \frac{dv}{dt}, 3 \]
Angular velocity, 17

Centres of mass
- bodies hanging freely, 40
- bodies with mass attached, 40
- circular arc, 30
- compound bodies, 37
- compound laminas, 31
- conical shell, 35
- hemisphere on slope, 41
- hemispherical shell method 1a, 33
- hemispherical shell method 1b, 34
- hemispherical shell method 2, 38
- laminas, 26
- pyramids, 36
- sector of circle, 29
- solids of revolution, 32
- standard results for laminas and arcs, 30
- standard results for uniform bodies, 37
- tilting bodies, 39

Force
- impulse of variable force, 9
- varying with speed, 4

Gravitation
- Newton's law, 11

Hooke’s Law
- elastic springs, 5
- elastic strings, 5
- energy stored in a string or spring, 7

Impulse
- variable force, 9

Motion in a circle
- acceleration towards centre, 17
- angular velocity, 17
- banking, 19
- conical pendulum, 19
- horizontal circles, 18
- inverted hollow cone, 20
- vertical circles, 21
- vertical circles at end of a rod, 24
- vertical circles at end of a string, 22
- vertical circles inside a sphere, 23
- vertical circles on outside of a sphere, 25

Simple harmonic motion
- \(a \sin \omega t \) and \(a \cos \omega t \), 13
- amplitude, 13
- basic equation, 13
- horizontal strings or springs, 15
- period, 13
- \(v^2 = \omega^2(a^2 - x^2) \), 13
- vertical strings or springs, 16

Work
- variable force, 10